Measuring the Complexity of Computational Content: Weihrauch Reducibility and Reverse Analysis
نویسندگان
چکیده
This report documents the program and the outcomes of Dagstuhl Seminar 15392 “Measuring the Complexity of Computational Content: Weihrauch Reducibility and Reverse Analysis.” It includes abstracts on most talks presented during the seminar, a list of open problems that were discussed and partially solved during the meeting as well as a bibliography on the seminar topic that we compiled during the seminar. Seminar September 20–25, 2015 – http://www.dagstuhl.de/15392 1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures and Classes, F.2.1 Numerical Algorithms and Problems, F.4.1 Mathematical Logic
منابع مشابه
The Vitali Covering Theorem in the Weihrauch Lattice
We study the uniform computational content of the Vitali Covering Theorem for intervals using the tool of Weihrauch reducibility. We show that a more detailed picture emerges than what a related study by Giusto, Brown, and Simpson has revealed in the setting of reverse mathematics. In particular, different formulations of the Vitali Covering Theorem turn out to have different uniform computatio...
متن کاملEffective Choice and Boundedness Principles in Computable Analysis
In this paper we study a new approach to classify mathematical theorems according to their computational content. Basically, we are asking the question which theorems can be continuously or computably transferred into each other? For this purpose theorems are considered via their realizers which are operations with certain input and output data. The technical tool to express continuous or compu...
متن کاملThe uniform content of partial and linear orders
The principle ADS asserts that every linear order on ω has an infinite ascending or descending sequence. This has been studied extensively in the reverse mathematics literature, beginning with the work of Hirschfeldt and Shore [16]. We introduce the principle ADC, which asserts that every such linear order has an infinite ascending or descending chain. The two are easily seen to be equivalent o...
متن کاملReverse Mathematics of Matroids
Matroids generalize the familiar notion of linear dependence from linear algebra. Following a brief discussion of founding work in computability and matroids, we use the techniques of reverse mathematics to determine the logical strength of some basis theorems for matroids and enumerated matroids. Next, using Weihrauch reducibility, we relate the basis results to combinatorial choice principles...
متن کاملComputation with Advice
Computation with advice is suggested as generalization of both computation with discrete advice and Type-2 Nondeterminism. Several embodiments of the generic concept are discussed, and the close connection to Weihrauch reducibility is pointed out. As a novel concept, computability with random advice is studied; which corresponds to correct solutions being guessable with positive probability. In...
متن کامل